मराठी

∫ X 2 ( X 2 + 1 ) ( 3 X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)}\]

Putting `x^2 = t`

\[\text{Then, }\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)}\]

\[\text{Let }\frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{3t + 4}\]

\[ \Rightarrow \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A \left( 3t + 4 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( 3t + 4 \right)}\]

\[ \Rightarrow t = A \left( 3t + 4 \right) + B \left( t + 1 \right)\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[ \therefore - 1 = A \left( - 3 + 4 \right) + 0\]

\[ \Rightarrow A = - 1\]

Putting `3t + 4 = 0`

\[ \Rightarrow t = - \frac{4}{3}\]

\[ \therefore - \frac{4}{3} = 0 + B \left( - \frac{4}{3} + 1 \right)\]

\[ \Rightarrow - \frac{4}{3} = B \times \left( - \frac{1}{3} \right)\]

\[ \Rightarrow B = 4\]

\[ \therefore \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = - \frac{1}{t + 1} + \frac{4}{3t + 4}\]

\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 x^2 + 4}\]

\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 \left( x^2 + \frac{4}{3} \right)}\]

\[ \Rightarrow \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = - \int\frac{dx}{x^2 + 1} + \frac{4}{3}\int\frac{dx}{x^2 + \left( \frac{2}{\sqrt{3}} \right)^2}\]

\[ = - \tan^{- 1} \left( x \right) + \frac{4}{3} \times \frac{\sqrt{3}}{2} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]

\[ = - \tan^{- 1} \left( x \right) + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 42 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

`∫     cos ^4  2x   dx `


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \sec^4 x\ dx\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \log_{10} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×