मराठी

∫ 1 2 + Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{2 + \sin x + \cos x}dx\]
\[\text{ Putting   sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{2 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{1 + \tan^2 \frac{x}{2}}{2\left( 1 + \tan^2 \frac{x}{2} \right) + 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{2 + 2 \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{\tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + 3}dx\]
\[\text{ Let tan }\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{t^2 + 2t + 3}\]
\[ = 2\int \frac{dt}{t^2 + 2t + 1 + 2}\]
\[ = 2\int \frac{dt}{\left( t + 1 \right)^2 + \left( \sqrt{2} \right)^2}\]
\[ = 2 \times \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t + 1}{\sqrt{2}} \right) + C \]
\[ = \sqrt{2} \tan^{- 1} \left( \frac{\tan \frac{x}{2} + 1}{\sqrt{2}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 11 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \log_{10} x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×