Advertisements
Advertisements
प्रश्न
\[\int {cosec}^4 2x\ dx\]
उत्तर
\[\text{ Let I } = \int {cosec}^4 \text{ 2x dx}\]
\[ = \int {cosec}^2 \text{ 2x } \cdot {cosec}^2 \text{ 2x dx }\]
\[ = \int\left( 1 + \cot^2 2x \right) \cdot {cosec}^2 \text{ 2x dx }\]
\[\text{ Putting cot 2x = t}\]
\[ \Rightarrow - {cosec}^2 \left( 2x \right) \cdot \text{ 2 dx = dt}\]
\[ \Rightarrow {cosec}^2 \left( 2x \right) \cdot dx = \frac{- dt}{2}\]
\[ \therefore I = - \frac{1}{2}\int\left( 1 + t^2 \right) \cdot dt\]
\[ = - \frac{1}{2} \left[ t + \frac{t^3}{3} \right] + C\]
\[ = - \frac{1}{2}\cot 2x + \frac{1}{6} \cot^3 2x + C ...........\left[ \because t = \cot 2x \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`