मराठी

∫ c o s e c 4 2 x d x - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int {cosec}^4 2x\ dx\]

बेरीज

उत्तर

\[\text{ Let I } = \int {cosec}^4 \text{ 2x dx}\]

\[ = \int {cosec}^2 \text{ 2x } \cdot {cosec}^2 \text{   2x       dx }\]

\[ = \int\left( 1 + \cot^2 2x \right) \cdot {cosec}^2 \text{ 2x  dx }\]

\[\text{ Putting   cot 2x = t}\]

\[ \Rightarrow - {cosec}^2 \left( 2x \right) \cdot \text{  2 dx = dt}\]

\[ \Rightarrow {cosec}^2 \left( 2x \right) \cdot dx = \frac{- dt}{2}\]

\[ \therefore I = - \frac{1}{2}\int\left( 1 + t^2 \right) \cdot dt\]

\[ = - \frac{1}{2} \left[ t + \frac{t^3}{3} \right] + C\]

\[ = - \frac{1}{2}\cot 2x + \frac{1}{6} \cot^3 2x + C ...........\left[ \because t = \cot 2x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 71 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×