मराठी

\[\Int\Frac{2x + 1}{\Sqrt{3x + 2}} Dx\] - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
बेरीज

उत्तर

\[\int\left( \frac{2x + 1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( \frac{6x + 3}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( \frac{6x + 4 - 1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( \frac{2\left( 3x + 2 \right)}{\sqrt{3x + 2}} - \frac{1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\int\left( 2\sqrt{3x + 2} - \frac{1}{\sqrt{3x + 2}} \right)dx\]
\[ = \frac{1}{3}\left[ \int2 \left( 3x + 2 \right)^\frac{1}{2} dx - \int \left( 3x + 2 \right)^{- \frac{1}{2}} dx \right]\]
\[ = \frac{1}{3}\left[ 2\left\{ \frac{\left( 3x + 2 \right)^\frac{1}{2} + 1}{3 \left( \frac{1}{2} + 1 \right)} \right\} - \frac{\left( 3x + 2 \right)^{- \frac{1}{2} + 1}}{\left( - \frac{1}{2} + 1 \right) \times 3} \right] + C\]
\[ = \frac{1}{3}\left[ \frac{4}{9} \left( 3x + 2 \right)^\frac{3}{2} - \frac{2}{3} \left( 3x + 2 \right)^\frac{1}{2} \right] + C\]
\[ = \frac{4}{27} \left( 3x + 2 \right)^\frac{3}{2} - \frac{2}{9} \left( 3x + 2 \right)^\frac{1}{2} + C\]
\[ = \sqrt{3x + 2}\left( \frac{4}{27}\left( 3x + 2 \right) - \frac{2}{9} \right) + C\]
\[ = \sqrt{3x + 2}\left( \frac{4\left( 3x + 2 \right) - 6}{27} \right) + C\]
\[ = \sqrt{3x + 2}\left( \frac{12x + 8 - 6}{27} \right) + C\]
\[ = \frac{2}{27}\left( 6x + 1 \right)\sqrt{3x + 2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 5 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \tan^3 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×