मराठी

∫ 1 X 2 − 10 X + 34 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^2 - 10x + 34} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{x^2 - 10x + 34}\]
\[ = \int\frac{dx}{x^2 - 10x + 25 - 25 + 34}\]
\[ = \int\frac{dx}{\left( x - 5 \right)^2 + 9}\]
\[ = \int\frac{dx}{\left( x - 5 \right)^2 + 3^2}\]
\[\text{ let x } - 5 = t\]
\[ \Rightarrow dx = dt\]
\[Now, \int\frac{dx}{\left( x - 5 \right)^2 + 3^2}\]
\[ = \int\frac{dt}{t^2 + 3^2}\]
\[ = \frac{1}{3} \tan^{- 1} \left( \frac{t}{3} \right) + C\]
\[ = \frac{1}{3} \tan^{- 1} \left( \frac{x - 5}{3} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.15 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.15 | Q 2 | पृष्ठ ८६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \tan^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×