Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{x^2 - 10x + 34}\]
\[ = \int\frac{dx}{x^2 - 10x + 25 - 25 + 34}\]
\[ = \int\frac{dx}{\left( x - 5 \right)^2 + 9}\]
\[ = \int\frac{dx}{\left( x - 5 \right)^2 + 3^2}\]
\[\text{ let x } - 5 = t\]
\[ \Rightarrow dx = dt\]
\[Now, \int\frac{dx}{\left( x - 5 \right)^2 + 3^2}\]
\[ = \int\frac{dt}{t^2 + 3^2}\]
\[ = \frac{1}{3} \tan^{- 1} \left( \frac{t}{3} \right) + C\]
\[ = \frac{1}{3} \tan^{- 1} \left( \frac{x - 5}{3} \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
` = ∫1/{sin^3 x cos^ 2x} dx`
Evaluate the following integrals:
Evaluate the following integral:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]