Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}dx\]
\[\text{Putting}\ \sin^2 x = t\]
\[ \Rightarrow 2\sin x . \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \sin 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin 2x dx} = dt\]
\[ \therefore I = \int\frac{1}{a^2 + b^2 t}dt\]
\[ = \frac{1}{b^2} \text{ln }\left| a^2 + b^2 t \right| + C\]
\[ = \frac{1}{b^2} \text{ln }\left| a^2 + b^2 \sin^2 x \right| + C \left[ \because t = \sin^2 x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x^3 \cos x^2 dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]