We have,I=∫x+x+1x+2dxLetLet,x+1=t2Differentiating both sides we getDifferentiating both sides we getdx=2tdtNow, integration becomesNow, integration becomesI=∫(t2−1+t)t2+12tdt=2∫t3+t2−tt2+1dt=2∫t3+t−t+t2+1−1−tt2+1dt=2∫t3+t+t2+1−t−t−1t2+1dt=2∫t3+tt2+1dt++2∫t2+1t2+1dt+2∫−2t−1t2+1dt =2 ∫tdt+2 ∫dt−2∫2tt2+1dt−2∫1t2+1dt2t - 2log =t2+2t - 2log |t2+1|−2tan−1t+Clog=(x+1)+2x+1−2log|x+2|−2tan−1x+1+C
∫{x2+elogx+(e2)x}dx
∫x2+5x+2x+2dx
∫ x-3x2+2x-4dx
log x cos x dx ∫(elog x+sinx) cos x dx
dx∫1sin4x+cos4x dx
∫(1+x2) cos2x dx
dx∫sin3(2x+1)dx