Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \cos^5 x \text{ dx }\]
\[ = \int \cos^4 x \cdot \text{ cos x dx}\]
\[ = \int \left( \cos^2 x \right)^2 \text{ cos x dx} \]
\[ = \int \left( 1 - \sin^2 x \right)^2 \text{ cos x dx}\]
\[\text{ Putting sin x = t}\]
\[ \Rightarrow \text{ cos x dx} = dt\]
\[ \therefore I = \int \left( 1 - t^2 \right)^2 \cdot dt\]
\[ = \int\left( t^4 - 2 t^2 + 1 \right) dt\]
\[ = \int t^4 \cdot dt - 2\int t^2 dt + \int dt\]
\[ = \frac{t^5}{5} - 2 \times \frac{t^{2 + 1}}{2 + 1} + t + C\]
\[ = \frac{t^5}{5} - \frac{2}{3} t^3 + t + C\]
\[ = \frac{\sin^5 x}{5} - \frac{2}{3} \sin^3 x + \sin x + C ........\left[ \because t = \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` ∫ \sqrt{tan x} sec^4 x dx `
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]