मराठी

∫ X 2 + X − 1 X 2 + X − 6 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx\]
\[ = \int\left( \frac{x^2 + x - 6 + 6 - 1}{x^2 + x - 6} \right)dx\]
\[ = \int\left( \frac{x^2 + x - 6}{x^2 + x - 6} \right)dx + 5\int\frac{1}{x^2 + x - 6}dx\]
\[ = \int dx + 5\int\frac{1}{x^2 + 3x - 2x - 6}dx\]
\[ = \int dx + 5\int\frac{1}{x\left( x + 3 \right) - 2\left( x + 3 \right)}dx\]
\[ = \int dx + 5\int\frac{1}{\left( x - 2 \right)\left( x + 3 \right)}dx ............(1)\]
\[\text{Let }\frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{A}{x - 2} + \frac{B}{x + 3}\]
\[ \Rightarrow \frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{A\left( x + 3 \right) + B\left( x - 2 \right)}{\left( x - 2 \right)\left( x + 3 \right)}\]
\[ \Rightarrow 1 = A\left( x + 3 \right) + B\left( x - 2 \right) . ............(2) \]
\[\text{Putting }x + 3 = 0\text{ or }x = - 3\text{ in eq. (2)}\]

\[\Rightarrow 1 = A \times 0 + B\left( - 3 - 2 \right)\]

\[\Rightarrow B = - \frac{1}{5}\]

\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (2)}\]

\[\Rightarrow 1 = A\left( 2 + 3 \right) + B \times 0\]

\[\Rightarrow A = \frac{1}{5}\]

\[\therefore \frac{1}{\left( x - 2 \right)\left( x + 3 \right)} = \frac{1}{5}\left( x - 2 \right) - \frac{1}{5}\left( x + 3 \right)\]

\[ \Rightarrow \int\frac{1}{\left( x - 2 \right)\left( x + 3 \right)}dx = \frac{1}{5}\int\frac{dx}{x - 2} - \frac{1}{5}\int\frac{dx}{x + 3}\]

\[ = \frac{1}{5} \ln \left| x - 2 \right| - \frac{1}{5} \ln \left| x + 3 \right| + C\]

\[ = \frac{1}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C ...........(3)\]

From eq. (1) and eq. (3)

\[ \therefore \int\left( \frac{x^2 + x - 1}{x^2 + x - 6} \right)dx = x + \frac{5}{5} \ln \left| \frac{x - 2}{x + 3} \right| + C\]

\[ = x + \ln \left| x - 2 \right| - \ln \left| x + 3 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 3 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int {cosec}^4 2x\ dx\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×