मराठी

∫ 1 2 − 3 X + 1 √ 3 X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
बेरीज

उत्तर

\[\int\left( \frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} \right)dx\]
\[ = \int\frac{dx}{2 - 3x} + \int \left( 3x - 2 \right)^{- \frac{1}{2}} dx\]
\[ = \frac{\ln  \left( 2 - 3x \right)}{- 3} + \left[ \frac{\left( 3x - 2 \right)^{- \frac{1}{2} + 1}}{3\left( - \frac{1}{2} + 1 \right)} \right] + C\]
\[ = \frac{\ln \left( 2 - 3x \right)}{- 3} + \frac{2}{3} \left( 3x - 2 \right)^\frac{1}{2} + C\]
\[ = - \frac{1}{3}\ln \left( 2 - 3x \right) + \frac{2}{3}\sqrt{3x - 2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.03 | Q 3 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×