मराठी

∫ X 3 X 4 − 18 X 2 + 11 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
बेरीज

उत्तर

` ∫   {x  dx}/{3 x^4 - 18 x^2 + 11}`
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
Now, ` ∫   {x  dx}/{3 x^4 - 18 x^2 + 11}`
\[ = \frac{1}{2}\int\frac{dt}{3 t^2 - 18t + 11}\]
\[ = \frac{1}{3 \times 2}\int\frac{dt}{t^2 - 6t + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 - 6t + 9 - 9 + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \frac{16}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \left( \frac{4}{\sqrt{3}} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{4}{\sqrt{3}}} \text{ log  }\left| \frac{t - 3 - \frac{4}{\sqrt{3}}}{t - 3 + \frac{4}{\sqrt{3}}} \right| + C\]
\[ = \frac{\sqrt{3}}{48} \text{ log  }\left| \frac{x^2 - 3 - \frac{4}{\sqrt{3}}}{x^2 - 3 + \frac{4}{\sqrt{3}}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.16 | Q 13 | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \sin^4 2x\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cos^5 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×