मराठी

∫ Cos X 1 − Cos X D X O R ∫ Cot X C O S E C X − Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]
बेरीज

उत्तर

\[\int\frac{\cot x}{\text{cosec x }- \cot x}dx\]
\[ = \int\frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}dx\]
\[ = \int\left( \frac{\cos x}{1 - \cos x} \right) \times \frac{\left( 1 + \cos x \right)}{\left( 1 + \cos x \right)}dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{1 - \cos^2 x} \right)dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{\sin^2 x} \right) dx\]
\[ = \int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} + \frac{\cos^2 x}{\sin^2 x} \right)dx\]
\[ = \int\left[ \left( \text{cot x cosec x} \right) + \cot^2 x \right]dx\]
\[ = \int\left[ \text{cosec x cot x }+ {cosec}^2 x - 1 \right]dx\]
\[ = -\text{ cosec x} - \cot x - x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 27 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×