मराठी

∫ 2 X − 3 X 2 + 6 X + 13 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
बेरीज

उत्तर

\[\int\frac{\left( 2x - 3 \right) dx}{x^2 + 6x + 13}\]
\[2x - 3 = A\frac{d}{dx}\left( x^2 + 6x + 13 \right) + B\]
\[2x - 3 = A \left( 2x + 6 \right) + B\]
\[2x - 3 = \left( 2 A \right) x + 6A + B\]

Comparing Coefficients of like powers of x

\[2A = 2\]
\[A = 1\]
\[6 A + B = - 3\]
\[6 + B = - 3\]
\[B = - 9\]
\[ \therefore 2x - 3 = 1 \left( 2x + 6 \right) - 9\]

\[\therefore \int\frac{\left( 2x - 3 \right)}{x^2 + 6x + 13}dx\]
\[ = \int\left( \frac{2x + 6 - 9}{x^2 + 6x + 13} \right)dx\]
` = ∫ (  {2x + 6+ 9}/{x^2 + 6x + 13} ) dx    - ∫  {9  dx }/ {x^2 + 6x + 13} `
\[ = \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 13} - 9\int\frac{dx}{x^2 + 6x + 3^2 - 3^2 + 13}\]
\[ = \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 13} - 9\int\frac{dx}{\left( x + 3 \right)^2 + 2^2}\]
\[ = \text{ log } \left| x^2 + 6x + 13 \right| - 9 \times \frac{1}{2} \text{ tan}^{- 1} \left( \frac{x + 3}{2} \right) + C\]
\[ = \text{ log }\left| x^2 + 6x + 13 \right| - \frac{9}{2} \text{ tan}^{- 1} \left( \frac{x + 3}{2} \right) + C\]

 

 

 

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 4 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×