मराठी

∫ 1 X 2 / 3 √ X 2 / 3 − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
बेरीज

उत्तर

 

\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]

\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[\text{ Let } x^\frac{1}{3} = t\]
\[ \Rightarrow \frac{1}{3} x^\frac{- 2}{3} dx = dt\]
\[ \Rightarrow \frac{1}{3 x^\frac{2}{3}} dx = dt\]
\[ \Rightarrow \frac{dx}{x^\frac{2}{3}} = 3 dt\]
\[Now, \int\frac{dx}{x^\frac{2}{3} \sqrt{x^\frac{2}{3} - 2^2}}\]
\[ = 3\int\frac{dt}{\sqrt{t^2 - 2^2}}\]
\[ = 3 \text{ log } \left| t + \sqrt{t^2 - 2^2} \right| + C\]
\[ = 3 \text{ log }\left| x^\frac{1}{3} + \sqrt{x^\frac{2}{3} - 4} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.18 | Q 13 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×