Advertisements
Advertisements
प्रश्न
उत्तर
\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[\text{ Let } x^\frac{1}{3} = t\]
\[ \Rightarrow \frac{1}{3} x^\frac{- 2}{3} dx = dt\]
\[ \Rightarrow \frac{1}{3 x^\frac{2}{3}} dx = dt\]
\[ \Rightarrow \frac{dx}{x^\frac{2}{3}} = 3 dt\]
\[Now, \int\frac{dx}{x^\frac{2}{3} \sqrt{x^\frac{2}{3} - 2^2}}\]
\[ = 3\int\frac{dt}{\sqrt{t^2 - 2^2}}\]
\[ = 3 \text{ log } \left| t + \sqrt{t^2 - 2^2} \right| + C\]
\[ = 3 \text{ log }\left| x^\frac{1}{3} + \sqrt{x^\frac{2}{3} - 4} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]