मराठी

∫ ( X − 2 ) √ 2 X 2 − 6 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\text{ Also, } x - 2 = \lambda\frac{d}{dx}\left( 2 x^2 - 6x + 5 \right) + \mu\]

\[ \Rightarrow x - 2 = \left( 4\lambda \right)x + \mu - 6\lambda\]

\[\text{Equating the coefficient of like terms}\]

\[4\lambda = 1\]

\[ \Rightarrow \lambda = \frac{1}{4}\]

\[\text{ And }\]

\[\mu - 6\lambda = - 2\]

\[ \Rightarrow \mu - 6 \times \frac{1}{4} = - 2\]

\[ \Rightarrow \mu = - 2 + \frac{3}{2} = - \frac{1}{2}\]

\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x - 6 \right) - \frac{1}{2} \right] \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[ = \frac{1}{4} \int \left( 4x - 6 \right) \sqrt{2 x^2 - 6x + 5} dx - \frac{1}{2}\int\sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\text{ Let 2 x }^2 - 6x + 5 = t\]

\[ \Rightarrow \left( 4x - 6 \right)dx = dt\]

\[ \therefore I = \frac{1}{4}\int t^\frac{1}{2} \text{ dt }- \frac{1}{2}\int\sqrt{2\left( x^2 - 3x + \frac{5}{2} \right)}\text{  dx }\]

\[ = \frac{1}{4}\int t^\frac{1}{2} - \frac{\sqrt{2}}{2}\int\sqrt{x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}} \text{  dx }\]

\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] - \frac{1}{\sqrt{2}}\int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}} \text{  dx }\]

\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}} \int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9 + 10}{4}} \text{  dx }\]

\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}}\int\sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} \text{  dx }\]

\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \left( \frac{x - \frac{3}{2}}{2} \right) \sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} + \frac{1}{8}\text{ log }\left| \left( x - \frac{3}{2} \right) + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]

\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \frac{2x - 3}{4} \sqrt{x^2 - 3x + \frac{5}{2}} + \frac{1}{8}\text{ log} \left| \frac{2x - 3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 6 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×