मराठी

∫ X √ X 2 + a 2 + √ X 2 − a 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
बेरीज

उत्तर

`∫   {x   dx}/{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2 }`
\[\text{Let x}^2 = t\]
\[ \Rightarrow 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{x dx }= \frac{dt}{2}\]
Now, `∫   {x   dx}/{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2 }`
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t + a^2} + \sqrt{t - a^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( \sqrt{t + a^2} + \sqrt{t - a^2} \right)} \times \frac{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}\]
\[ = \frac{1}{2}\int\frac{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}{\left( t + a^2 \right) - \left( t - a^2 \right)}dt\]
\[ = \frac{1}{4 a^2}\int \left( t + a^2 \right)^\frac{1}{2} dt - \frac{1}{4 a^2}\int \left( t - a^2 \right)^\frac{1}{2} dt\]
\[ = \frac{1}{4 a^2}\left[ \frac{\left( t + a^2 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{1}{4 a^2}\left[ \frac{\left( t - a^2 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{6 a^2}\left[ \left( t + a^2 \right)^\frac{3}{2} - \left( t - a^2 \right)^\frac{3}{2} \right] + C\]
\[ = \frac{1}{6 a^2}\left[ \left( x^2 + a^2 \right)^\frac{3}{2} - \left( x^2 - a^2 \right)^\frac{3}{2} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 55 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×