English

∫ X √ X 2 + a 2 + √ X 2 − a 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
Sum

Solution

`∫   {x   dx}/{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2 }`
\[\text{Let x}^2 = t\]
\[ \Rightarrow 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{x dx }= \frac{dt}{2}\]
Now, `∫   {x   dx}/{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2 }`
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t + a^2} + \sqrt{t - a^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( \sqrt{t + a^2} + \sqrt{t - a^2} \right)} \times \frac{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}\]
\[ = \frac{1}{2}\int\frac{\left( \sqrt{t + a^2} - \sqrt{t - a^2} \right)}{\left( t + a^2 \right) - \left( t - a^2 \right)}dt\]
\[ = \frac{1}{4 a^2}\int \left( t + a^2 \right)^\frac{1}{2} dt - \frac{1}{4 a^2}\int \left( t - a^2 \right)^\frac{1}{2} dt\]
\[ = \frac{1}{4 a^2}\left[ \frac{\left( t + a^2 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{1}{4 a^2}\left[ \frac{\left( t - a^2 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{6 a^2}\left[ \left( t + a^2 \right)^\frac{3}{2} - \left( t - a^2 \right)^\frac{3}{2} \right] + C\]
\[ = \frac{1}{6 a^2}\left[ \left( x^2 + a^2 \right)^\frac{3}{2} - \left( x^2 - a^2 \right)^\frac{3}{2} \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 55 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×