English

∫ X 3 ( X − 1 ) ( X − 2 ) ( X − 3 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
Sum

Solution

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right)\left( x - 3 \right)}dx\]
\[ = \int\frac{x^3}{\left( x - 1 \right) \left( x^2 - 5x + 6 \right)}dx\]
\[ = \int\frac{x^3}{x^3 - 5 x^2 + 6x - x^2 + 5x - 6}dx\]
\[ = \int\frac{x^3}{x^3 - 6 x^2 + 11x - 6}dx\]
\[ \therefore \frac{x^3}{x^3 - 6 x^2 + 11x - 6} = 1 + \frac{6 x^2 + 11x + 6}{x^2 - 6 x^2 + 11x - 6}\]
\[ \Rightarrow \frac{x^3}{x^3 - 6 x^2 + 11x - 6} = 1 + \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \therefore \int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx = \int dx + \int\frac{\left( 6 x^2 - 11x + 6 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}dx ............(1)\]

\[\text{Let }\frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}\]
\[ \Rightarrow \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right)}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 6 x^2 - 11x + 6 = A \left( x - 2 \right) \left( x - 3 \right) + B \left( x - 1 \right) \left( x - 3 \right) + C \left( x - 1 \right) \left( x - 2 \right) ..............(2)\]
\[\text{Putting }x - 2 = 0\text{ or }x = 2\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 4 - 22 + 6 = B \left( 2 - 1 \right) \left( 2 - 3 \right)\]
\[ \Rightarrow 8 = B \left( - 1 \right)\]
\[ \Rightarrow B = - 8\]
\[\text{Putting }x - 3 = 0\text{ or }x = 3\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 3^2 - 11 \times 3 + 6 = C \left( 3 - 1 \right) \left( 3 - 2 \right)\]
\[ \Rightarrow 27 = C \left( 2 \right) \left( 1 \right)\]
\[ \Rightarrow C = \frac{27}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (2)}\]
\[ \Rightarrow 6 \times 1 - 11 + 6 = A \left( 1 - 2 \right) \left( 1 - 3 \right)\]
\[ \Rightarrow 1 = A \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow A = \frac{1}{2}\]
\[ \therefore \frac{6 x^2 - 11x + 6}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \frac{1}{2\left( x - 1 \right)} - \frac{8}{x - 2} + \frac{27}{2\left( x - 3 \right)}..........(3)\]
From eq. (2) and (3)
\[ \therefore \int\frac{x^3 dx}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} = \int dx + \frac{1}{2}\int\frac{1}{x - 1}dx - 8\int\frac{1}{x - 2}dx + \frac{27}{2}\int\frac{1}{x - 3}dx\]
\[ = x + \frac{1}{2} \ln \left| x - 1 \right| - 8 \ln \left| x - 2 \right| + \frac{27}{2} \ln \left| x - 3 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 10 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×