English

∫ Sin X Log ( Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

` ∫    sin x log  (\text{ cos x ) } dx  `
Sum

Solution

 ` \text{ Let I }= ∫    sin x  . log  (\text{ cos x ) } dx  `
\[\text{ Let cos x }= t\]
\[ \Rightarrow - \text{ sin x dx }= dt\]
\[ \Rightarrow \text{ sin x dx }= - dt \]
\[ \therefore I = - \int\text{ log t dt}\]
\[ = - \int 1_{} \cdot \text{ log t dt }\]
\[\text{Taking log t as the first function and 1 as the second function} . \]
\[ = \log t\int \text{ 1 dt }- \int\left\{ \frac{d}{dt}\left( \log t \right)\int1dt \right\}dt\]
\[ = - \left[ \log t \cdot t - \int\frac{1}{t} \times\text{  t dt } \right]\]
\[ = - \left[ \log t \cdot t - t \right] + C\]
\[ = - t\left( \log t - 1 \right) + C . . . . (1) \]
\[\text{Substituting the value of t in eq}   \text{ (1) }\]
\[ = - \cos x\left\{ \text{ log  }\left( \text{ cos x }\right) - 1 \right\} + C\]
\[ = \text{ cos x }\left\{ 1 - \text{ log }\left( \cos x \right) \right\} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 20 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×