English

∫ 1 4 Cos X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
Sum

Solution

\[\text{ Let I} = \int \frac{1}{4 \cos x - 1}dx\]
\[\text{ Putting  cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{4\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - 1}dx\]
\[ = \int \frac{1}{\frac{4\left( 1 - \tan^2 \frac{x}{2} \right) - \left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right)}}\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)dx}{4 - 4 \tan^2 \left( \frac{x}{2} \right) - 1 - \tan^2 \left( \frac{x}{2} \right)}\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right) dx}{3 - 5 \tan^2 \left( \frac{x}{2} \right)}\]
\[\text{ Let tan } \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)\text{ dx }= dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{3 - 5 t^2}\]
\[ = \frac{2}{5} \int \frac{dt}{\frac{3}{5} - t^2}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( \frac{\sqrt{3}}{\sqrt{5}} \right)^2 - t^2}\]
\[ = \frac{2}{5} \times \frac{\sqrt{5}}{2\sqrt{3}}\text{ In }\left| \frac{\frac{\sqrt{3}}{\sqrt{5}} + t}{\frac{\sqrt{3}}{\sqrt{5}} - t} \right| + C\]
\[ = \frac{1}{\sqrt{15}}\text{ ln } \left| \frac{\sqrt{3} + \sqrt{5} t}{\sqrt{3} - \sqrt{5} t} \right| + C\]
\[ = \frac{1}{\sqrt{15}}\text{  ln }\left| \frac{\sqrt{3} + \sqrt{5} \tan \left( \frac{x}{2} \right)}{\sqrt{3} - \sqrt{5} \tan \left( \frac{x}{2} \right)} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 4 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int \left( \tan x + \cot x \right)^2 dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^3}{x - 2} dx\]

`∫     cos ^4  2x   dx `


\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×