English

∫ ( E ( Log X ) + Sin X ) Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]

Sum

Solution

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]
\[ = \int \left( x + \sin x \right)\cos x dx \left( \because e^(log x = x \right)\]
\[ = \int \left( x \cos x + \sin x \cos x \right) dx\]
\[ = \int x \text{ cos x dx }+ \frac{1}{2}\int 2 \sin x \text{ cos x dx }\]
\[ = \int x_I \text{ cos}_{II} \text{    x  dx }+ \frac{1}{2} \int\text{ sin 2x dx }\]
\[ = \left[ x\int\text{ cos x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text
{ cos  x  dx } \right\}dx \right] + \frac{1}{2} \int\text{ sin  2x  dx }\]
\[ = x \sin x - \int1 . \text{ sin  x  dx} + \frac{1}{2}\left[ \frac{- \cos 2x}{2} \right] + C\]
\[ = x \sin x - \left( - \cos x \right) - \frac{1}{4}\cos 2x + C\]
\[ = x \sin x + \cos x - \frac{1}{4}\left( 1 - 2 \sin^2 x \right) + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} - \frac{1}{4} + C\]
\[ = x \sin x + \cos x + \frac{\sin^2 x}{2} + C'   \text{  where C' = C }- \frac{1}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 46 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x^3 \text{ log x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×