English

∫ 5 X + 3 √ X 2 + 4 X + 10 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{\left( 5x + 3 \right) dx}{\sqrt{x^2 + 4x + 10}}\]
\[\text{ Consider, }\]
\[5x + 3 = A \frac{d}{dx} \left( x^2 + 4x + 10 \right) + B\]
\[ \Rightarrow 5x + 3 = A \left( 2x + 4 \right) + B\]
\[ \Rightarrow 5x + 3 = \left( 2A \right) x + 4A + B\]
\[\text{Equating Coefficients of like terms}\]
\[\text{ 2  A} = 5\]
\[ \Rightarrow A = \frac{5}{2}\]
\[\text{ And }\]
\[4A + B = 3\]
\[ \Rightarrow 4 \times \frac{5}{2} + B = 3\]
\[ \Rightarrow B = - 7\]
\[ \therefore I = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{x^2 + 4x + 10}}\]
\[ = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{x^2 + 4x + 4 - 4 + 10}}\]
\[ = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + \left( \sqrt{6} \right)^2}}\]
\[\text{ Putting,} x^2 + 4x + 10 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \frac{5}{2}\int\frac{dt}{\sqrt{t}} - 7 \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 + 6} \right| + C\]
\[ = \frac{5}{2}\int t^{- \frac{1}{2}} dt - 7 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]
\[ = \frac{5}{2} \times 2\sqrt{t} - 7 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]
\[ = 5\sqrt{x^2 + 4x + 10} - 7 \text{ log }\left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 17 | Page 111

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×