English

∫ Cos 4 X − Cos 2 X Sin 4 X − Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
Sum

Solution

\[\int\left( \frac{\cos4x - \cos2x}{\sin4x - \sin2x} \right)dx\]
\[ = \int\frac{- 2\sin\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}{2\cos\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}dx \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \text{and} \sin A - \sin B = 2\cos \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \right]\]
\[ = - \int\frac{\sin 3x}{\cos 3x}dx\]
\[ = - \int\tan 3x dx\]
\[ = \frac{- \text{ln }\left| \sec 3x \right|}{3} + C\]
\[ = \frac{1}{3} \text{ln} \left( \left| \text{sec 3x} \right| \right)^{- 1} + C\]
\[ = \frac{1}{3} \text{ln }\left| \cos 3x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 30 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \cos^3 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×