English

∫ 5 X 2 − 1 X ( X − 1 ) ( X + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
Sum

Solution

We have,
\[I = \int\frac{\left( 5 x^2 - 1 \right) dx}{x \left( x - 1 \right) \left( x + 1 \right)}\]

\[\text{Let }\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}\]

\[ \Rightarrow \frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x^2 - 1 \right) + Bx \cdot \left( x + 1 \right) + C \cdot x \cdot \left( x - 1 \right)}{x \left( x - 1 \right) \left( x + 1 \right)}\]

\[ \Rightarrow 5 x^2 - 1 = A \left( x^2 - 1 \right) + B \cdot x \left( x + 1 \right) + C \cdot x \cdot \left( x - 1 \right)\]

Putting x = 1

\[ \Rightarrow 5 - 1 = A \times 0 + B \left( 1 \right) \left( 1 + 1 \right) + C \times 0\]

\[ \Rightarrow 4 = B \left( 2 \right)\]

\[ \Rightarrow B = 2\]

Putting x = 0

\[ \Rightarrow 5 \times 0 - 1 = A \left( 0 - 1 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow - 1 = A \left( - 1 \right)\]

\[ \Rightarrow A = 1\]

Putting x + 1 = 0

\[x = - 1\]

\[5 - 1 = A \times 0 + B \times 0 + C \left( - 1 \right) \left( - 2 \right)\]

\[ \Rightarrow C = 2\]

\[ \therefore I = \int\frac{dx}{x} + 2\int\frac{dx}{x - 1} + 2\int\frac{dx}{x + 1}\]

\[ = \log \left| x \right| + 2 \log \left| x - 1 \right| + 2 \log \left| x + 1 \right| + C\]

\[ = \log \left| x \right| + 2 \left\{ \log \left| x^2 - 1 \right| \right\} + C\]

\[ = \log \left| x \left( x^2 - 1 \right)^2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 19 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×