English

∫ 1 ( X 2 + 2 ) ( X 2 + 5 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{dx}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)}\]
\[\text{ Putting x}^2 = t\]
\[ \therefore \frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} = \frac{1}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[\text{ Let }\frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A}{t + 2} + \frac{B}{t + 5}\]
\[ \Rightarrow \frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A \left( t + 5 \right) + B \left( t + 2 \right)}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[ \Rightarrow 1 = A \left( t + 5 \right) + B \left( t + 2 \right)\]
\[\text{ Putting t = - 5}\]
\[ \therefore 1 = B \left( - 5 + 2 \right)\]
\[ \Rightarrow B = - \frac{1}{3}\]
\[\text{ Putting t = - 2}\]
\[ \therefore 1 = A \left( - 2 + 5 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dx}{x^2 + 2} - \frac{1}{3}\int\frac{dx}{x^2 + 5}\]
\[ = \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{3\sqrt{2}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{5}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 125 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×