Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\frac{dx}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)}\]
\[\text{ Putting x}^2 = t\]
\[ \therefore \frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} = \frac{1}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[\text{ Let }\frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A}{t + 2} + \frac{B}{t + 5}\]
\[ \Rightarrow \frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A \left( t + 5 \right) + B \left( t + 2 \right)}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[ \Rightarrow 1 = A \left( t + 5 \right) + B \left( t + 2 \right)\]
\[\text{ Putting t = - 5}\]
\[ \therefore 1 = B \left( - 5 + 2 \right)\]
\[ \Rightarrow B = - \frac{1}{3}\]
\[\text{ Putting t = - 2}\]
\[ \therefore 1 = A \left( - 2 + 5 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dx}{x^2 + 2} - \frac{1}{3}\int\frac{dx}{x^2 + 5}\]
\[ = \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{3\sqrt{2}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{5}} \right) + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then