English

∫ Sin √ X √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
Sum

Solution

\[\int\frac{\sin \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int\frac{\sin \sqrt{x}}{\sqrt{x}}dx\]
\[ = 2\int\text{sin t dt}\]
\[ = 2 \left[ - \cos t \right] + C\]
\[ = - 2 \cos \sqrt{x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 47 | Page 59

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×