English

∫ 1 a + b tan x dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{a + b \tan x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{1}{a + b \tan x}dx\]

\[ = \int\frac{1}{a + b \frac{\sin x}{\cos x}}dx\]

\[ = \int\frac{\cos x \cdot}{a \cos x + b \sin x}dx\]

\[\text{ Let } \cos x = \text{ A }\frac{d}{dx} \left( a \cos x + b \sin x \right) + \text{ B }\left( a \cos x + b \sin x \right)\]

\[ \Rightarrow \cos x = A \left( - a \sin x + b \cos x \right) + B \left( a \cos x + b \sin x \right)\]

\[1 \cdot \cos x = \left( Ab + B \cdot a \right) \cos x + \sin x\left( - A \cdot a + B \cdot b \right)\]

\[\text{Equating coefficients of like terms}\]

\[ A \cdot b + B \cdot a = 1 . . . \left( 1 \right)\]

\[ - A \cdot a + B \cdot b = 0 . . . \left( 2 \right)\]

\[\text{Multiplying equation} \left( 1 \right) \text{by a and eq} \left( 2 \right) \text{by b and then adding them} \]

\[ A \cdot ab + B \cdot a^2 = a\]

\[ - A \cdot a \cdot b + B b^2 = 0\]

\[ \Rightarrow B = \frac{a}{a^2 + b^2}\]

\[\text{Substituting the value of B in eq} \left( 1 \right)\]

\[ \Rightarrow A \cdot b + \frac{a^2}{a^2 + b^2} = 1\]

\[ \Rightarrow A \cdot b = 1 - \frac{a^2}{a^2 + b^2}\]

\[ \Rightarrow A = \frac{b}{a^2 + b^2}\]

\[ \therefore I = \frac{b}{a^2 + b^2}\int\left( \frac{- a \sin x + b \cos x}{a \cos x + b \sin x} \right)dx + \frac{a}{a^2 + b^2}\int\left( \frac{a \cos x + b \sin x}{a \cos x + b \sin x} \right)dx\]

\[ = \frac{b}{a^2 + b^2}\int\left( \frac{- a \sin x + b \cos x}{a \cos x + b \sin x} \right)dx + \frac{a}{a^2 + b^2}\int dx\]

\[\text{ Putting  a   cos x + b sin x = t in  the Ist  integral}\]

\[ \Rightarrow \left( - a \sin x + b \cos x \right)dx = dt\]

\[ \therefore I = \frac{b}{a^2 + b^2}\int\frac{dt}{t} + \frac{a}{a^2 + b^2}\int dx\]

\[ = \frac{b}{a^2 + b^2} \text{ ln }\left| t \right| + \frac{ax}{a^2 + b^2} + C\]

\[ = \frac{b}{a^2 + b^2} \text{ ln} \left| a \cos x + b \sin x \right| + \frac{ax}{a^2 + b^2} + C................ \left[ \because t = a \cos x + b \sin x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 58 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×