English

∫ 1 5 + 7 Cos X + Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
Sum

Solution

\[\text{ Let I }= \int \frac{1}{5 + 7 \cos x + \sin x} \text{ dx }\]
\[\text{ Putting cos x } = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and  sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{5 + 7 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{5\left( 1 + \tan^2 \frac{x}{2} \right) + 7 - 7 \tan^2 \frac{x}{2} + 2 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right)}{- 2 \tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 12}dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
 `therefore I =∫   {2    dt}/{- 2 t^2 + 2t + 12} `
\[ = \int \frac{dt}{- t^2 + t + 6}\]
\[ = \int \frac{- dt}{t^2 - t - 6}\]
\[ = \int \frac{- dt}{t^2 - t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 6}\]
\[ = \int \frac{- dt}{\left( t - \frac{1}{2} \right)^2 - \frac{1}{4} - 6}\]
\[ = \int \frac{- dt}{\left( t - \frac{1}{2} \right)^2 - \left( \frac{5}{2} \right)^2}\]
\[ = \int \frac{dt}{\left( \frac{5}{2} \right)^2 - \left( t - \frac{1}{2} \right)^2}\]
\[ = \frac{1}{2 \times \frac{5}{2}}\text{ log }\left| \frac{\frac{5}{2} + t - \frac{1}{2}}{\frac{5}{2} - t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5}\text{ log }\left| \frac{2 + t}{3 - t} \right| + C\]
\[ = \frac{1}{5}\text{ log } \left| \frac{2 + \tan \frac{x}{2}}{3 - \tan \frac{x}{2}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 15 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int {cosec}^3 x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×