English

∫ 1 √ 2 X + 3 + √ 2 X − 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
Sum

Solution

\[\int\frac{dx}{\left( \sqrt{2x + 3} + \sqrt{2x} - 3 \right)}\]

Rationalise the denominator

\[= \int\frac{\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}{\left( \sqrt{2x + 3} + \sqrt{2x - 3} \right)\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}dx\]
\[ = \int\frac{\left( \sqrt{2x + 3} - \sqrt{2x - 3} \right)}{\left( 2x + 3 \right) - \left( 2x - 3 \right)}dx\]
\[ = \frac{1}{6}\int \left( 2x + 3 \right)^\frac{1}{2} dx - \frac{1}{6}\int \left( 2x - 3 \right)^\frac{1}{2} dx\]
\[ = \frac{1}{6}\left[ \frac{\left( 2x + 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} \right] - \frac{1}{6}\left[ \frac{\left( 2x - 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} \right] + C\]
\[ = \frac{1}{18}\left\{ \left( 2x + 3 \right)^\frac{3}{2} - \left( 2x - 3 \right)^\frac{3}{2} \right\} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.03 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.03 | Q 6 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\  ∫    x   \text{ e}^{x^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×