Advertisements
Advertisements
Question
\[\int \left( e^x + 1 \right)^2 e^x dx\]
Sum
Solution
\[\int \left( e^x + 1 \right)^2 e^x \text{dx} \]
\[ = \int\left( e^{2x} + 2 e^x + 1 \right) e^x dx\]
\[ = \int\left( e^{3x} + 2 e^{2x} + e^x \right) dx\]
\[ = \left[ \frac{e^{3x}}{3} + \frac{2 e^{2x}}{2} + e^x \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \sin^4 2x\ dx\]
\[\int \tan^3 x\ dx\]
\[\int \cot^4 x\ dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]