English

∫ X 2 ( X − 1 ) 3 ( X + 1 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\text{ Let } \frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} = \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right)^2} + \frac{C}{\left( x - 1 \right)^3} + \frac{D}{x + 1} . . . . . \left( 1 \right)\]
\[ \Rightarrow x^2 = A \left( x - 1 \right)^2 \left( x + 1 \right) + B\left( x - 1 \right)\left( x + 1 \right) + C \left( x + 1 \right) + D \left( x - 1 \right)^3 . . . . . \left( 2 \right)\]
\[\text{ Putting x }= 1 \text{ in }\left( 2 \right), \text{we get}\]
\[1 = 2C\]
\[ \Rightarrow C = \frac{1}{2}\]
\[\text{ Putting x = - 1 in} \left( 2 \right), \text{we get}\]
\[1 = - 8D\]
\[ \Rightarrow D = \frac{- 1}{8}\]

\[\text{ Putting x = 2 in}\left( 2 \right), \text{ we get}\]

\[4 = 3A + 3B + 3C + D\]

\[ \Rightarrow 4 = 3A + 3B + \frac{3}{2} - \frac{1}{8}\]

\[ \Rightarrow 3A + 3B = 4 - \frac{3}{2} + \frac{1}{8}\]

\[ \Rightarrow 3A + 3B = \frac{32 - 12 + 1}{8}\]

\[ \Rightarrow 3A + 3B = \frac{21}{8}\]

\[ \Rightarrow A + B = \frac{7}{8}\]

\[\text{ And putting x = 0 in} \left( 2 \right), \text{ we get}\]

\[0 = A - B + C - D\]

\[ \Rightarrow 0 = A - B + \frac{1}{2} + \frac{1}{8} ..................\left[ \because C = \frac{1}{2}, D = \frac{1}{8} \right]\]

\[ \Rightarrow A - B = - \frac{5}{8}\]

\[\]

 

 

\[\text{ Here, A + B} = \frac{7}{8} \text{ and A - B} = - \frac{5}{8} \Rightarrow A = \frac{1}{8} \text{ and B } = \frac{3}{4}\]

\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]

\[\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} = \frac{1}{8\left( x - 1 \right)} + \frac{3}{4 \left( x - 1 \right)^2} + \frac{1}{2 \left( x - 1 \right)^3} - \frac{1}{8\left( x + 1 \right)}\]

\[\text{ Now, integral becomes}\]

\[I = \int\left[ \frac{1}{8\left( x - 1 \right)} + \frac{3}{4 \left( x - 1 \right)^2} + \frac{1}{2 \left( x - 1 \right)^3} - \frac{1}{8\left( x + 1 \right)} \right]dx\]

\[ = \frac{1}{8}\text{ log }\left| x - 1 \right| - \frac{3}{4\left( x - 1 \right)} - \frac{1}{4 \left( x - 1 \right)^2} - \frac{1}{8}\text{ log }\left| x + 1 \right| + C\]

\[ = \frac{1}{8}\text{ log }\left| \frac{x - 1}{x + 1} \right| - \frac{3}{4\left( x - 1 \right)} - \frac{1}{4 \left( x - 1 \right)^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 122 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×