English

∫ X 2 + X + 1 ( X + 1 ) 2 ( X + 2 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\text{ Let }\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2} . . . . . \left( 1 \right)\]
\[ \Rightarrow x^2 + x + 1 = A\left( x + 1 \right)\left( x + 2 \right) + B\left( x + 2 \right) + C \left( x + 1 \right)^2 . . . . . \left( 2 \right)\]
\[ \text{ Putting x = - 1 in }\left( 2 \right), \text{we get}\]
\[ B = 1\]
\[ \text{ Putting x = - 2 in }\left( 2 \right), \text{we get}\]
\[ C = 3\]
\[ \text{ Putting x = 0 in} \left( 2 \right), \text{we get}\]
\[1 = 2A + 2B + C\]
\[ \Rightarrow 1 = 2A + 2 + 3\]
\[ \Rightarrow - 4 = 2A\]
\[ \Rightarrow A = - 2\]
\[\text{Now}, \left( 1 \right) \text{becomes}\]
\[\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2}\]
\[\text{Therefore, integral becomes}\]
\[I = \int\left[ \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2} \right]dx\]
\[ = - 2 \text{ log} \left| x + 1 \right| - \frac{1}{\left( x + 1 \right)} + 3 \text{ log} \left| x + 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 128 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×