Advertisements
Advertisements
Question
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
Sum
Solution
\[\int\frac{dx}{x\sqrt{4 - 9 \left( \log x \right)^2}}\]
` \text{ let log x }= t `
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[Now, \int\frac{dx}{x\sqrt{4 - 9 \left( \log x \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{4 - 9 t^2}}\]
\[ = \int\frac{dt}{\sqrt{2^2 - \left( 3t \right)^2}}\]
\[ = \frac{1}{3} \text{ sin }^{- 1} \left( \frac{3t}{2} \right) + C\]
\[ = \frac{1}{3} \text{ sin }^{- 1} \left( \frac{3 \log x}{2} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
`∫ cos ^4 2x dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \cos^5 x\ dx\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`