Let I Let I =∫11−sinx+cosxdx Putting sin x and Putting sin x=2tanx21+tan2x2 and cosx=1−tan2x21+tan2x2=∫11−2tanx21+tan2x2+1−tan2x21+tan2x2dx=∫(1+tan2x2)(1+tan2x2)−2tanx(2+1−tan2x2)dx=∫sec2x22−2tan(x2)dx=12∫sec2(x2)1−tan(x2)dxLet[1−tan(x2)]=t sec⇒− sec2(x2)×12dx=dt sec 2dt ⇒ sec2(x2)dx=− 2dt ∴I=12∫−2dtt=−∫dtt ln =− ln |t|+C ln =− ln |1−tanx2|+C
Integrate the following integrals:
Evaluate the following integrals:
The primitive of the function isf(x)=(1−1x2)ax+1x,a>0 is