English

Evaluate the Following Integrals: ∫ X 7 ( a 2 − X 2 ) 5 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
Sum

Solution

\[\text{Let I} = \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[ \text{Let x} = a \sin\theta\]

\[ \text{On differentiating both sides, we get}\]

`  dx =  a  cos  θ  dθ `

\[ \therefore I = \int\frac{a^8 \sin^7 \theta \cos\theta}{\left( a^2 - a^2 \sin^2 \theta \right)^5}d\theta\]

\[ = \int\frac{a^8 \sin^7 \theta \cos\theta}{a^{10} \left( 1 - \sin^2 \theta \right)^5}d\theta\]

\[ = \int\frac{\sin^7 \theta}{a^2 \cos^9 \theta}d\theta\]

\[ = \frac{1}{a^2}\int \tan^7 \theta \sec^2 \theta d\theta\]

\[\]

\[ \text{Let} \tan\theta = t\]

` " On differentiating both sides, we get" `

`sec^2 θ  dθ  = dt`

\[ \therefore I = \frac{1}{a^2}\int t^7 dt\]

\[ = \frac{1}{a^2}\frac{t^8}{8} + c\]

\[ = \frac{1}{8 a^2}\left( \tan^8 \theta \right) + c\]

\[ = \frac{1}{8 a^2} \left( \tan\left( \sin^{- 1} \frac{x}{a} \right) \right)^8 + c\]

\[ = \frac{1}{8 a^2} \left( \tan\left( \tan^{- 1} \frac{x}{\sqrt{a^2 - x^2}} \right) \right)^8 + c\]

\[ = \frac{1}{8 a^2} \left( \frac{x}{\sqrt{a^2 - x^2}} \right)^8 + c\]

\[ = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]

\[Hence, \int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx = \frac{1}{8 a^2}\frac{x^8}{\left( a^2 - x^2 \right)^4} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.13 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.13 | Q 2 | Page 79

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×