Advertisements
Advertisements
Question
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
Sum
Solution
∫ cotn x cosec2 x dx
Let cot x = t
⇒ –cosec2 x dx = dt
⇒ cosec2 x dx = –dt
\[Now, \int \cot^n \text{ x } {cosec}^2 \text { x dx }\]
\[ = - \int t^n dt \]
\[ = \frac{- t^{n + 1}}{n + 1} + C\]
\[ = - \frac{\cot^{n + 1} x}{n + 1} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
` ∫ tan^5 x sec ^4 x dx `
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x \cos^2 x\ dx\]
`int"x"^"n"."log" "x" "dx"`
\[\int\frac{\log x}{x^n}\text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`