English

∫ E 2 X ( 1 + Sin 2 X 1 + Cos 2 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
Sum

Solution

\[\text{We have}, \]

\[I = \int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right)dx\]

\[ = \int e^{2x} \left( \frac{1}{1 + \cos 2x} + \frac{\sin 2x}{1 + \cos 2x} \right)dx\]

\[ = \int e^{2x} \left( \frac{1}{2 \cos^2 x} + \frac{2 \sin x \cos x}{2 \cos^2 x} \right)dx\]

\[ = \int e^{2x} \left( \frac{\sec^2 x}{2} + \tan x \right)dx\]

\[\text{ Let e}^{2x} \tan x = t\]

\[ \Rightarrow \left( e^{2x} \sec^2 x + 2 e^{2x} \tan x \right)dx = dt\]

\[ = \left[ \frac{e^{2x} \sec^2 x}{2} + e^{2x} \tan x \right]dx = \frac{dt}{2}\]

\[ \therefore I = \int \frac{dt}{2}\]

\[ = \frac{t}{2} + C\]

\[ = \frac{e^{2x} \tan x}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 118 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int \sin^4 2x\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×