Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right)dx\]
\[ = \int e^{2x} \left( \frac{1}{1 + \cos 2x} + \frac{\sin 2x}{1 + \cos 2x} \right)dx\]
\[ = \int e^{2x} \left( \frac{1}{2 \cos^2 x} + \frac{2 \sin x \cos x}{2 \cos^2 x} \right)dx\]
\[ = \int e^{2x} \left( \frac{\sec^2 x}{2} + \tan x \right)dx\]
\[\text{ Let e}^{2x} \tan x = t\]
\[ \Rightarrow \left( e^{2x} \sec^2 x + 2 e^{2x} \tan x \right)dx = dt\]
\[ = \left[ \frac{e^{2x} \sec^2 x}{2} + e^{2x} \tan x \right]dx = \frac{dt}{2}\]
\[ \therefore I = \int \frac{dt}{2}\]
\[ = \frac{t}{2} + C\]
\[ = \frac{e^{2x} \tan x}{2} + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`