English

∫ X + 2 2 X 2 + 6 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]
Sum

Solution

\[\int\left( \frac{x + 2}{2 x^2 + 6x + 5} \right)dx\]
\[x + 2 = A\frac{d}{dx}\left( 2 x^2 + 6x + 5 \right) + B\]
\[x + 2 = A \left( 4x + 6 \right) + B\]
\[x + 2 = \left( 4 A \right) x + 6 A + B\]

Comparing the Coefficients of like powers of x

\[\text{ 4 A }= 1\]
\[A = \frac{1}{4}\]
\[\text{ 6 A + B } = 2\]
\[6 \times \frac{1}{4} + B = 2\]
\[B = \frac{1}{2}\]

\[\therefore \int\left( \frac{x + 2}{2 x^2 + 6x + 5} \right)dx\]
\[ = \int\left[ \frac{\frac{1}{4}\left( 4x + 6 \right) + \frac{1}{2}}{2 x^2 + 6x + 5} \right]dx\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{2}\int\frac{1}{2 x^2 + 6x + 5}dx\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{x^2 + 3x + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 + \frac{1}{4}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{4} \text{  log }\left| 2 x^2 + 6x + 5 \right| + \frac{1}{4} \times 2 \text{ tan}^{- 1} \left( \frac{x + \frac{3}{2}}{\frac{1}{2}} \right) + C\]
\[ = \frac{1}{4} \text{ log }\left| 2 x^2 + 6x + 5 \right| + \frac{1}{2} \text{ tan}^{- 1} \left( 2x + 3 \right) + C\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 11 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×