English

∫ 1 4 Cos 2 X + 9 Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int \frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]


\[ \Rightarrow I = \int \frac{\frac{1}{\cos^2 x}}{4 + 9 \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{4 + 9 \tan^2 x}dx\]
\[\text{ Let tan } x = t\]
` ⇒  sec^2  x   dx = dt `
\[ \therefore I = \int \frac{dt}{4 + 9 t^2}\]
\[ = \frac{1}{9}\int \frac{dt}{\frac{4}{9} + t^2}\]
\[ = \frac{1}{9}\int \frac{dt}{\left( \frac{2}{3} \right)^2 + t^2}\]
\[ = \frac{1}{9} \times \frac{3}{2} \text[\text{  tan }^{- 1} \left( \frac{t}{\frac{2}{3}} \right) + C\]
\[ = \frac{1}{6} \text{ tan }^{- 1} \left( \frac{3t}{2} \right) + C\]
\[ = \frac{1}{6} \text{ tan }^{- 1} \left( \frac{3 \tan x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 1 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×