English

∫ X 2 + X + 1 X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
Sum

Solution

\[Let I = \int\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)dx\]
\[\text{ Now }, \]

\[\text{ Therefore }, \]
\[\frac{x^2 + x + 1}{x^2 - x + 1} = 1 + \frac{2x}{x^2 - x + 1}\]
\[ \Rightarrow \int\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) dx = \int dx + \int\left( \frac{2x - 1 + 1}{x^2 - x + 1} \right) dx\]
\[ = \int dx + \int\left( \frac{2x - 1}{x^2 - x + 1} \right) dx + \int\frac{dx}{x^2 - x + 1}\]
\[ = \int dx + \int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \int\frac{dx}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \int dx + \int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \int\frac{dx}{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = x + \text{ log } \left| x^2 - x + 1 \right| + \frac{2}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{2x - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 6 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×