English

∫ 3 X + 1 √ 5 − 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]

Sum

Solution

 

  ` \text{ Let I }=∫  {x   dx}/{\sqrt{8 + x - x^2}} `

\[\text{ Consider }, x = A\frac{d}{dx} \left( 8 + x - x^2 \right) + B\]

\[x = A \left( 1 - 2x \right) + B\]

\[x = \left( - 2A \right) x + A + B\]

\[\text{ Equating Coefficients of like terms }\]

\[ - 2A = 1\]

\[ \Rightarrow A = - \frac{1}{2}\]

\[\text{ And }\]

\[A + B = 0\]

\[ \Rightarrow - \frac{1}{2} + B = 0\]

\[ \Rightarrow B = \frac{1}{2}\]

\[ \therefore x = - \frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}\]

\[\text{ Then }, \]

\[I = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + x - x^2}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x \right)}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + \frac{1}{4} - \left( x - \frac{1}{2} \right)^2}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[\text{ let 8 + x - x^2 = t }\]

\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]

\[ \therefore I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{33}}{2}} \right) + C\]

\[ = - \sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]

\[ = - \sqrt{8 + x - x^2} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 6 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×