Advertisements
Advertisements
Question
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
Sum
Solution
\[\int\left( \frac{1 + \cos x}{1 - \cos x} \right) dx\]
\[ = \int\left( \frac{2 \cos^2 \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx \left[ \therefore 1 + \cos x = 2 \cos^2 \frac{x}{2} \text{and} 1 - \cos x = 2 \sin^2 \frac{x}{2} \right]\]
\[ = \int \cot^2 \frac{x}{2} dx\]
` = ∫ ( "cosec"^2 x/2 -1)` dx
\[ = \frac{- \cot \left( \frac{x}{2} \right)}{\frac{1}{2}} - x + C\]
\[ = - 2 \cot \left( \frac{x}{2} \right) - x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int \tan^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]