English

∫ ( X + 1 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\text{ Also,} x + 1 = \lambda\frac{d}{dx} \left( x^2 + x + 1 \right) + \mu\]

\[ \Rightarrow x + 1 = \lambda\left( 2x + 1 \right) + \mu\]

\[ \Rightarrow x + 1 = \left( 2\lambda \right)x + \lambda + \mu\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 1 \]

\[ \Rightarrow \lambda = \frac{1}{2}\]

\[\text{ And }\]

\[\lambda + \mu = 1\]

\[ \Rightarrow \frac{1}{2} + \mu = 1\]

\[ \therefore \mu = \frac{1}{2}\]

\[ \therefore I = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1}\text{  dx }+ \frac{1}{2}\int\sqrt{x^2 + x + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{1}{2}\int\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{1}{2}\int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} dx\]

\[\text{ Let x}^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]

\[\text{ Then },\]

\[I = \frac{1}{2}\int\sqrt{t} \text{ dt} + \frac{1}{2}\left[ \frac{x + \frac{1}{2}}{2}\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log  }\left| \left( x + \frac{1}{2} \right) + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + C\]
\[ = \frac{1}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 7 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫      tan^5    x   dx `


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×