English

∫ Tan 5 X D X - Mathematics

Advertisements
Advertisements

Question

` ∫      tan^5    x   dx `

Sum

Solution

∫ tan5 x dx
= ∫ tan4 x. tan x dx
= ∫(sec2 x – 1)2 . tan x dx

= ​​∫ (sec4 x – 2 sec2 x + 1) tan x dx
= ∫ tan x . sec4 x dx – 2 ​∫ sec2 x . tan x dx+  ​∫ ta
n x dx

= ∫ sec2 x. sec2 x . tan x dx – 2 ​∫ tan x sec2 x dx + ​∫ tan x dx
= ∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx + ​∫ tan x dx

Let I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
And I2=∫ tan x dx

∫ tan5 x dx=I1 + I2
Now, I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
Let tan x = t

⇒ sec2x dx = dt
I1=∫ (1 + tan2 x) . tan x . sec2 x dx – 2 ​∫ tan x . sec2 x dx
∫ (1 + t2) . t. dt – 2 ​∫ t. dt

∫ (t + t3) dt – 2 ​∫ t dt 

\[\frac{t^2}{2} + \frac{t^4}{4} - \frac{2 t^2}{2} + C_1 \]

\[ = \frac{t^4}{4} - \frac{t^2}{2} + C_1 \]

\[ = \frac{\tan^4 x}{4} - \frac{\tan^2 x}{2} + C_1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.11 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.11 | Q 5 | Page 69

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^4 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×