English

∫ 1 4 + 3 Tan X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{4 + 3 \tan x} dx\]
Sum

Solution

\[\text{  Let I }= \int\frac{dx}{4 + 3 \tan x}\]
\[ = \int\frac{dx}{4 + \frac{3 \sin x}{\cos x}}\]
\[ = \int\frac{\text{ cos x } dx}{4 \cos x + 3 \sin x}\]
\[\text{ Consider,} \]
\[\cos x = A \left( 4 \cos x + 3 \sin x \right) + B\frac{d}{dx}\left( 4 \cos x + 3 \sin x \right)\]
\[ \Rightarrow \cos x = A \left( 4 \cos x + 3 \sin x \right) + B \left( - 4 \sin x + 3 \cos x \right)\]
\[ \Rightarrow \cos x = \left( 4A + 3B \right) \cos x + \left( 3A - 4B \right) \sin x\]
\[\text{ Equating the coefficients of like terms }\]
\[4A + 3B = 1 . . . . . \left( 1 \right)\]
\[3A - 4B = 0 . . . . . \left( 2 \right)\]

Solving (1) and (2), we get

\[A = \frac{4}{25} \text{ and B }= \frac{3}{25}\]

\[\int\left[ \frac{\frac{4}{25}\left( 4 \cos x + 3 \sin x \right) + \left( - 4 \sin x + 3 \cos x \right)\frac{3}{25}}{4 \cos x + 3 \sin x} \right]dx\]
\[ = \frac{4}{25}\int dx + \frac{3}{25}\int\left( \frac{- 4 \sin x + 3 \cos x}{4 \cos x + 3 \sin x} \right)dx\]
\[\text{ let 4  cos x + 3 sin x = t}\]
\[ \Rightarrow \left( - 4 \sin x + 3 \cos x \right)dx = dt\]
\[\text{ Then, }\]
\[I = \frac{4}{25}\int dx + \frac{3}{25}\int\frac{dt}{t}\]
\[ = \frac{4x}{25} + \frac{3}{25} \text{  log }\left| t \right| + C\]
\[ = \frac{4x}{25} + \frac{3}{25} \text{ log }\left| 4 \cos x + 3 \sin x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 9 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x \sin x \cos x\ dx\]

 


 
` ∫  x tan ^2 x dx 

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×