Advertisements
Advertisements
Question
\[\int x \sin^3 x\ dx\]
Sum
Solution
Let I =\[\int x \text{ sin}^3 \text{ x dx }\]
sin (3A) = 3 sin A – 4 sin3 A
\[\sin^3 A = \frac{1}{4}\left[ 3 \sin A - \sin 3A \right]\]
\[ \therefore I = \frac{1}{4}\int x . \left( 3 \sin x - \sin 3x \right)dx\]
\[ = \frac{3}{4}\int x_I . \sin_{II} \text{ x dx} - \frac{1}{4}\int x_I {. \sin_{II} \left( 3x \right)} \text{ dx }\]
\[ = \frac{3}{4}\left[ x\left( - \cos x \right) - \int1 . \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x\left( - \frac{\cos 3x}{3} \right) - \int1 . \left( - \frac{\cos 3x}{3} \right)dx \right]\]
\[ = - \frac{3x \cos x}{4} + \frac{3}{4}\sin x + \frac{x \cos 3x}{12} - \frac{1}{36}\sin 3x + C\]
\[ \therefore I = \frac{1}{4}\int x . \left( 3 \sin x - \sin 3x \right)dx\]
\[ = \frac{3}{4}\int x_I . \sin_{II} \text{ x dx} - \frac{1}{4}\int x_I {. \sin_{II} \left( 3x \right)} \text{ dx }\]
\[ = \frac{3}{4}\left[ x\left( - \cos x \right) - \int1 . \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x\left( - \frac{\cos 3x}{3} \right) - \int1 . \left( - \frac{\cos 3x}{3} \right)dx \right]\]
\[ = - \frac{3x \cos x}{4} + \frac{3}{4}\sin x + \frac{x \cos 3x}{12} - \frac{1}{36}\sin 3x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
` ∫ sin 4x cos 7x dx `
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]