English

∫ 1 √ X ( 1 + 1 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
Sum

Solution

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right)dx\]
\[ = \int x^{- \frac{1}{2}} \left( 1 + \frac{1}{x} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + \frac{1}{x^\frac{3}{2}} \right)dx\]
\[ = \int x^{- \frac{1}{2}} dx + \int x^{- \frac{3}{2}} dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \left[ \frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1} \right]\]
\[ = 2\sqrt{x} - \frac{2}{\sqrt{x}} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 11 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int \log_{10} x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \cot^5 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×