English

∫ Cot 5 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cot^5 x\ dx\]
Sum

Solution

\[\text{ Let  I } = \int \cot^5 \text{ x  dx }\]
\[ = \int \cot^2 x \cdot \cot^3\text{ x  dx }\]
\[ = \int\left(\text{cosec}^2 x - 1 \right) \cot^3 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2\text{ x  dx } - \int \cot^3 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2 \text{ x  dx }- \int\cot x \cdot \cot^2 \text{ x  dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2\text{ x  dx }- \int\cot x \left( {cosec}^2 x - 1 \right)\text{   dx }\]
\[ = \int \cot^3 x \cdot \text{cosec}^2 \text{ x  dx } - \int\cot x \cdot \text{ cosec}^2\text{ x  dx }+ \int\cot\text{ x  dx }\]
\[\text{   Putting cot  x  = t   in  the  Ist  and  IInd  integral}\]
\[ \Rightarrow - \text{cosec}^2\text{ x  dx }= dt\]
\[ \Rightarrow \text{cosec}^2 \text{ x  dx }= - dt\]
\[ \therefore I = - \int t^3 dt + \int t \cdot dt + \int\cot\text{ x  dx }\]
\[ = - \frac{t^4}{4} + \frac{t^2}{2} + \text{ ln }\left| \sin x \right| + C\]
\[ = - \frac{\cot^4 x}{4} + \frac{\cot^2 x}{2} + \text{ ln }\left| \sin x \right| + C .........\left( \because t = \cot x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 32 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  tan^5 x   sec ^4 x   dx `

` ∫  sec^6   x  tan    x   dx `

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×