English

∫ √ 1 + E X E X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{1 + e^x} .  e^x dx\]
Sum

Solution

\[\int\sqrt{1 + e^x} \cdot e^x dx\]

\[\text{Let 1 }+ e^x = t\]

\[ \Rightarrow e^x = \frac{dt}{dx}\]

\[ \Rightarrow e^x dx = dt\]

\[Now, \int\sqrt{1 + e^x} \cdot e^x dx\]

\[ = \int\sqrt{t} \cdot dt\]

\[ = \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} + C\]

\[ = \frac{2}{3} t^\frac{3}{2} + C\]

\[ = \frac{2}{3} \left( 1 + e^x \right)^\frac{3}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 4 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \cos^3 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×