English

∫ ( 1 + √ X ) 2 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
Sum

Solution

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}}dx\]

\[Let, 1 + \sqrt{x} = t\]

\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]

\[Now, \int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}}dx \]

\[ = 2\int t^2 dt\]

\[ = \frac{2}{3} t^3 + C\]

\[ = \frac{2}{3} \left( 1 + \sqrt{x} \right)^3 + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 3 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^2\text{ b x dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cos^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int x \cos^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×